

Equipes de pesquisadores nestes estudos:

- Wanderlei Pignati UFMT/ISC
- Josino C. Moreira e Frederico Peres FIOCRUZ;
- Eliana Dores UFMT/Química
- Carolina Lourencetti UFMT/Química
- **Peter Zeilhofer** UFMT/Geografia
- Oscarlina Weber UFMT/Agronomia
- Alicio Pinto UFMT/Química
- **Tami Mott** UFMT/Biologia
- Marta Pignatti UFMT/ISC
- Ageo Barros Silva UFMT/ISC
- Professores e alunos do 2º grau da Escola Est. D. Bosco de Lucas RV;
- Mestrandos da Saúde Coletiva; do R.Hídricos; da Geografia; Biologia...
- Técnicos dos laboratórios: LARB/UFMT e CESTEH/FIOCRUZ
- Colaboradores: Sind trab rurais Lucas RV, SMS Lucas RV, CEREST, SES, INDEA, SRTE, INSS, FASE e MPE;

• Equipe de elaboração do Dossiê I (agrotóxicos, alimentos e saúde) e

• Equipe de elaboração do **Dossiê II** (agrotóxicos, **ambiente** e sustentabilidade), da **ABRASCO**, 2012.

Desenvolvimento, agronegócio e saúde

- No Brasil, 40% do PIB vem da cadeia produtiva do agronegócio (alimentos, madeira, fibras, couro, ...);
- Na maioria dos municípios do "interior" do Brasil, essa participação pode subir de 70% a 90% do PIB;
- Que tipo de desenvolvimento ele está trazendo??
- Monoculturas agrícolas químico-dependente;
- Monopólio das sementes; fertilizantes; agrotóxicos;
- Alimentos ou mercadorias ou commodities???
- Segurança alimentar e nutricional??? Como???
- Quais são os riscos sanitário-social-ambiental???
- Vigilância à saúde e/ou do desenvolvimento???

Etapas do processo produtivo do agronegócio e seus impactos na saúde do trabalhador, na população e no ambiente

Desmatamento

Derrubada de Árvores Seleção de Madeiras Seleção de Lenhas Queimadas Moto-serras Combustível Tratores

Ind. Madeira

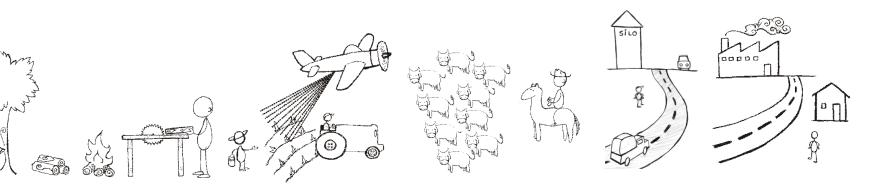
Serraria/Taboa/Vigas Laminadora Fabric. Compensado Esquadrias e forros Serras, Laminas, Polias Tratores

Agricultura

Preparo do solo Sementes Agrotóxico, Calcario, Fertilizantes quimico Tratores, Aviões Maquinas agrícolas

Pecuária

Pastagens Manejo de bovinos, Suínos e aves. Agrotóxico, Calcário, Fertilizantes químico Tratores - Aviões Máquinas agricolas


Transporte/Armazem

Carga e Descarga de Cereais, Gado... Agrotóxico, Calcário, Fertilizantes químico Silos, Caminhões, Tratores, Secadores, Máquinas Agrícolas

Agroindústria

Fab. óleo e farelos, Frigoríficos, Usinas Açúcar/Alcool, Benef. Algodão, Curtumes, Silos, Caminhões Tratores Máquinas Industriais

Trabalhadores

Acidentes de Trabalho

Agravos na População

Mutilados, Sequelados Doenças Inf. Parasit. Acid. Anim. Peçonhe. Doenças Pulmares

Danos Ambientais

Fumaças, Erosão do Solo, biopirataria. Extinção de espécies

Agravos na População

Mutilados, Sequelados Hipertensos Desemprego

Danos Ambientais

Pós de Serra, Fumaças, Resíduos de Agrotóxicos.

Agravos na População

Intoxicação por Agrotóxicos e Fertilizantes químico. Neoplasias, Malform.

Danos Ambientais

Erosão Solo,Resíduos de fertilizantes e Agrotóxico. Extinção de espécies.

Agravos na População

Intoxicação por Agrotóxicos e Fertilizantes químico. Neoplasias, Malform.

Danos Ambientais

Erosão Solo,Resíduos de fertilizantes e Agrotóxico. Extinção de espécies.

Agravos na População

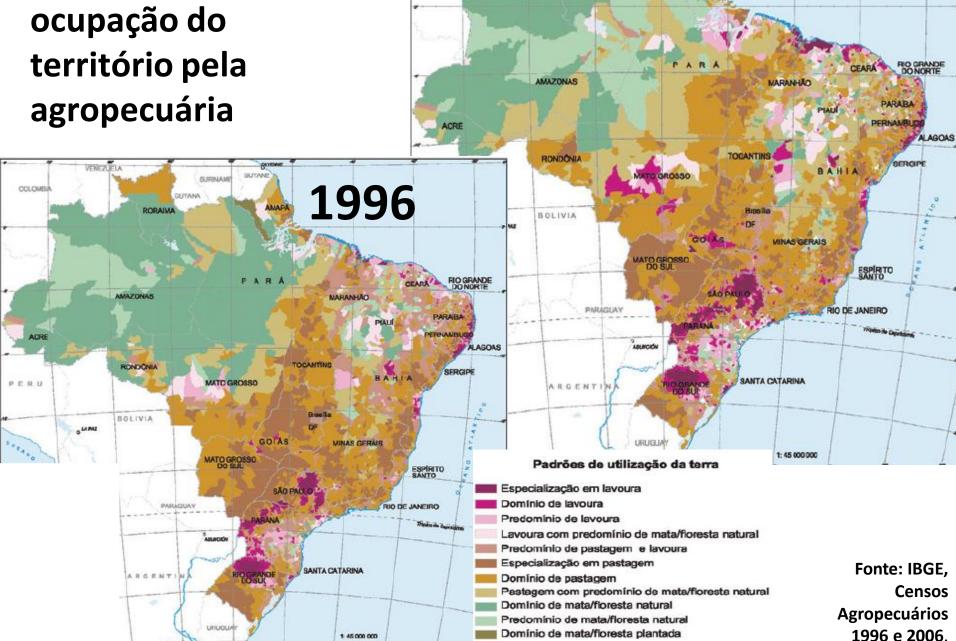
Acidentes transporte e trânsito, mutilados e sequelados.

Danos Ambientais

Poluição do Ar, Solo Água. Acidente de cargas

Agravos na População

Consumo de produtos com resíduos, mutilados e sequelados


Danos Ambientais

Poluição via efluentes: esgoto ind, chaminés e outros resíduos

Fonte: original do autor, Pignati WA, tese doutorado Fiocruz/Ensp, 2007, p.18.

perigosas

Padrão de

COLOUBL

GUYANA

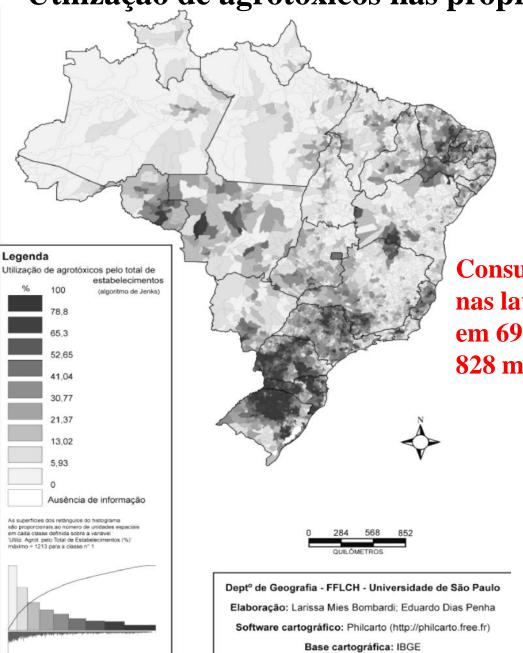
RORAIMA

2006

Produção agrícola brasileira de 2002 a 2011; em milhões de hectares.

Brasil	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Algodão	0,8	0,7	1,2	1,3	0,9	1,1	1,1	1,2	1,4	1,7
Arroz	3,2	3,2	3,8	4	3	2,9	2,9	2,8	2,9	2,8
Borracha	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,1
Café	2,4	2,4	2,4	2,3	2,3	2,3	2,3	2,2	2,1	2,2
Cana	5,2	5,4	5,6	5,8	6,4	7,1	8,2	9,5	10	11
Feijão	4,3	4,4	4,3	4	4,2	4	4	4	4,3	3,7
Mandioca	1,7	1,6	1,8	1,9	2	1,9	2	2,1	1,8	1,8
Milho	12,3	13,3	12,9	12,2	13	14	14,7	15,5	13,6	13,6
Soja	16,4	18,5	21,6	23,4	22,1	20,6	21,1	21,6	22,2	22,7
Sorgo	0,5	0,8	0,9	0,8	0,7	0,7	0,8	1,1	0,8	0,7
Trigo	2,2	2,6	2,8	2,4	1,8	1,9	2,4	2,6	2,4	2,2
Citrus	0,9	1	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Outros	4,5	4,5	4,7	5,1	5,1	4,9	4,8	4,8	6,4	7,8
Total	54,5	58,5	63	64,3	62,6	62,3	65,3	68,8	69,0	71,1

Produção pecuária brasileira de 2002 a 2011; em milhões de cabeças


Brasil	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Bovino	185,3	195,6	204,5	207,2	205,9	199,8	202,3	204,9	209,5	213,7
Suíno	31,9	32,3	33,1	34,1	35,2	35,9	36,8	37,7	39,0	39,7
Frangos	703,7	737,5	759,5	812,5	819,9	930	994,3	1063	1028,2	1048,7
Galinhas	180,4	183,8	184,8	186,6	191,6	197,6	207,7	218,3	210,8	215,0

Consumo de agrotóxicos e fertilizantes químicos nas lavouras do Brasil; 2002 a 2011

BRASIL	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Agrotóxicos (Milhões de L)	599,5	643,5	693	706,2	687,5	686,4	673,9	725	827,8	852,8
Fertilizantes (Milhões Kg)	4.910	5.380	6.210	6.550	6.170	6.070	6.240	6.470	6.497	6.743

Fonte: IBGE/SIDRA 2012, ANDA 2012, SINDAG, 2012; MAPA, 2010. Obs: passou de 10,5 L/hectare para 12 L/hectare.

Utilização de agrotóxicos nas propriedades agrícolas do Brasil

Fonte: IBGE - 2006

2011

Utilização de agrotóxicos por tamanho da propriedade:

0 - 10 hectares: 27%,

10 – 100 hectares: 36%;

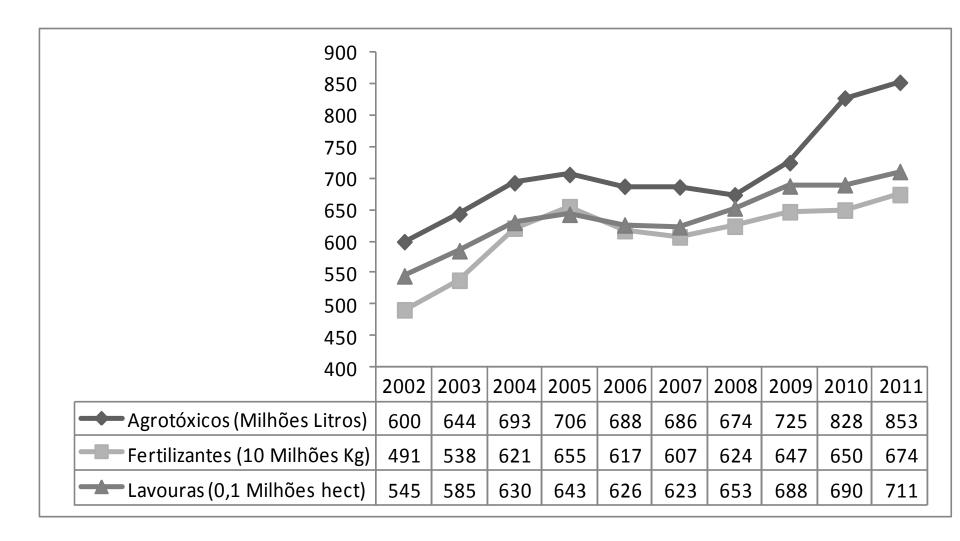
> 100 hectares: 80%

Fonte: Ibge, 2006

Consumo de agrotóxicos em 2010 nas lavouras temp. e permanentes, em 69 milhões de hectares foi de 828 milhões de litros (Sindag, 2012).

Utilização de agrotóxicos

por estado: **MT 20%**; **SP 18%**;


PR 14%, RGS 11%, MG 9%;

GO 8,8%; BA 6,5%; MS 4,7%;

SC 2%; demais 6% (em 2010);

Fonte: Sindag, 2012

Produção agrícola e consumo de agrotóxicos e fertilizantes químicos nas lavouras do Brasil; 2002 a 2011.

Fonte: IBGE/SIDRA 2012, MAPA 2010, ANDA 2012, SINDAG 2012, INDEA-MT 2011

Consumo de agrotóxicos por cultura, hectare e exposição no BR e MT:

- Brasil: em 2008 o consumo foi de 674 milhões litros (produto formulado), o que correspondeu a uma exposição de 3,9 litros/habitante e em 2010 foi de 828 milhões de litros e exposição de 4,3 L/hab. (SINDAG 2012, ANVISA 2012).
- MT: em 2010 o consumo foi de 113 milhões de litros (prod. formulado) para uma cultura de 9,5 milhões hectares (soja + milho + algodão + cana +); Lucas R V plantou 420 mil hectares (soja, milho e algodão) e pulverizou 5,1 milhões litros.
- MT a exposição aos agrotóxicos por habitante em 2010 foi de 36 L/habit, no "interior" foi de 50 L/habit e em Lucas Rio Verde foi de 136 L/habitante;
- Fonte: Sistema de Informação de Agrotóxicos do INDEA-MT onde as revendedoras registram todos os dados dos receituários agronômicos nas notas fiscais e que via online se centralizam no INDEA-MT na SEDRAF em Cuiabá; Este Sistema público só existe em MT, MG e PR ou consultando o SINDAG.
- Média de consumo de agrotóxicos (produto formulado) em litros por hectare de lavoura: soja=12, milho=6, cana=4,8 e algodão=28 l/hectare por safra/ano de 2010; soma de herbicidas, inseticidas, fungicidas e outros;

A lei dos **Agrotóxicos** (7802/89) e decreto 4074/02 define-os como:

"os produtos e os agentes de processos físicos, químicos ou biológicos, destinados ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de florestas, nativas ou implantadas, e de outros ecossistemas e também de ambientes urbanos, hídricos e industriais, cuja finalidade seja alterar a composição da flora ou da fauna, a fim de preserválas da ação danosa de seres vivos considerados nocivos; substâncias e produtos, empregados como desfolhantes, dessecantes, estimuladores e inibidores de crescimento; Componentes: os princípios ativos, produtos técnicos, suas matérias-primas, os ingredientes inertes e aditivos usados na fabricação

Quanto à **Toxicidade** se classificam:

Classe I – Extremamente tóxico;

Classe II – Altamente tóxico;

de agrotóxicos e afins".

Classe III - Medianamente tóxico;

Classe IV – Pouco tóxico.

IN/MAPA 02/8; **aérea; 500m** NR31 Medicina e Seg Trab Port 2914/12/MS pot água; CONAMA 357 e 396; Constit, 8080, cód florestal,

Outras regulamentações:

Ex. Dec.2283/09/MT; 300m

Quanto à finalidade:

LEIS ESTADUAIS;

- •Inseticida;
- Herbicida;Fungicida;
- •Acaricida;
- •Nematicida;
- •Rodentecida;
- •Controladores de crescimento;
- •Algicida;
- •Adjuvantes (Espalhantes, adesivos, solventes e surfactantes).

agrotóxicos

Formas de exposição

Ocupacional;

Alimentar;


Ambiental:

 ar, água, chuva, solo,
 domicílio, agropecuária,...

Tipos de intoxicação

- Aguda;
- Sub-aguda;
- · Crônica.

agricultura

acidente e deriva ou poluição intencional por agrotóxicos e fertilizantes químicos

Pecuária bovina

Cadeia produtiva: pastagem, bois, Frigoríficos, trabalhadores agrotóxicos, fertilizantes, vacinas e "suplemento alimentar".

Referência: Vasconcellos MC; Pignatti MG; Pignati WA: Agravos e empregos na indústria frigorífica de Mato Grosso; Saúde e Sociedade, 18(4):662-672, 2009

Agroindústria sucro-alcooleira

JORNADA EXTENUANTE

Para cortar uma média diária de 12 toneladas de cana

o trabalhador despende cerca de 183.150 golpes de fação

faz aproximadamente 36.630 flexões de perna

percorre cerca de 4.400 metros para transportá-la carregando em torno de 15 quilos

O trabalho é realizado sob o sol com uma perda de cerca de oito litros de água por dia do seu organismo.

Após 12 safras, os cortadores manuais de cana ficam fisicamente incapacitados para o trabalho

Proteção, maio 2008, p 44

Fontes: João Batista Amâncio e Denise Gaudard

Outros impactos na saúde-ambiente:

Absorção pulmonar de particulados com resíduos de agrotóxicos, fertilizantes quimicos e ...;

Aumento de internação e morbi-mortalidade ocupacionais

Aumento de internação e morbi-mortalidade em crianças e idosos na região

Contaminação das águas por agrotóxicos, fertilizantes químicos e vinhoto na região

Trabalho análogo aos escravos; precariedade dos alojamentos;

Biocombustíveis: etanol, biodiesel, ...

RAÇÃO e suplementos alimentar ; TRABALHADORES, EPI's, LER/DORT, d.psiquiátricas, colônias,

Resíduos de Agrotóxicos nos alimentos: PARA

Resultados insatisfatórios (%)*

Cultura	2006	2007	2008	2009	2010
Alface	28,6	40,0	19,8	38,4	54,2
Banana	N	4,3	1,0	3,5	**
Batata	0	1,4	2,0	1,2	0
Cenoura	N	9,9	30,4	24,8	49,6
Laranja	0	6,0	14,8	10,3	12,2
Mamão	N	17,2	17,3	38,8	30,4
Maça	5,3	2,9	3,9	5,3	8,9
Morango	37,6	43,6	36,0	50,8	63,4
Tomate	2,0	44,7	18,3	32,6	16,3
Abacaxi			9,7	44,1	32,8
Arroz			4,4	27,2	7,4
Cebola			2,9	16,3	3,1
Feijão			2,9	3,0	6,5
Manga			1,0	8,1	4,0
Pimentão			64,4	80,0	91,8
Repolho			8,8	20,5	31,9
Uva			32,7	56,4	***

Fonte: Ministério da Saúde/ANVISA/PARA (dez 2011), **pepino 57% e ***beterraba 32%

* >LMR e/ou não autoriz;

Os resultados referem-se aos estados: AC, AM,BA,CE, DF, ES, GO, MA, MT, MG, MS, PA, PB, PE, PI, PR, RJ, RN, RS, RO, RR, SC, SE, TO Leite??? Soja??? Carnes?

Agrotóxicos X Doenças humanas

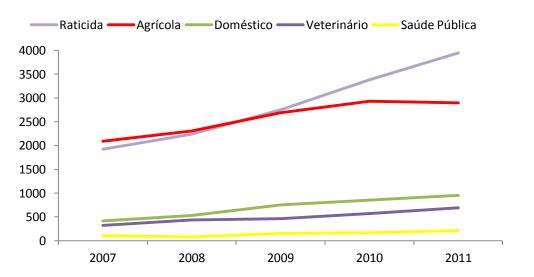
- Agrotóxicos X defensivo agrícola X pesticida X praguicida X agroquímico, mas na Lei
 7.802/89, Decreto 4.074/02, Lei 8588/06/MT e Decreto 2283/09/MT = Agrotóxicos
- Agravos agudos: gastro-intestinais, dérmicos, hepáticos, renais, neurológicos, pulmonares, deficiências no sist. imunológico, quadros clínicos psiquiátricos, ...
- Agravos crônicos:
- Psiquiátricos (depressão, irritabil,..); distúrbios do desenvolvimento Cognitivo
- neurológicos (neurites periféricas, surdez, doença de parkinson,...)
- Desreguladores endócrinos (diabetes, hipotiroid, infertilid, abôrtos,..)
- Teratogênicos (anencefalia, esp. bífida, malformações card/intest, abôrtos,.)
- Mutagênicos (induz defeitos no DNA dos espermatozóides e óvulos,...)
- Carcinogênicos (mama, ovário, próstata, testículo, esof/esto, wilms...)
- Resíduos contaminantes nos alimentos, água, solo, ar, chuva, toda biota

Agrotóxicos X Danos ambientais

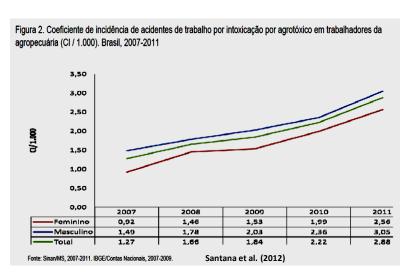
Efeitos e/ou sintomas agudos e crônicos dos agrotóxicos

Classificação quanto à praga que controla	Classificação quanto ao grupo químico	Sintomas de intoxicação aguda	Sintomas de intoxicação Crônica		
	Organofosforados e carbamatos	Fraqueza, cólicas abdominais, vômitos, espasmos musculares e convulsões	Efeitos neurotóxicos retardados, alterações cromossomiais e dermatites de contato		
Inseticidas	Organoclorados	Náuseas, vômitos, contrações musculares involuntárias	Lesões hepáticas, arritmias cardíacas, lesões renais e neuropatias periféricas		
	Piretróides Sintéticos	Irritações das conjuntivas, espirros, excitação, convulsões	Alergias, asma brônquica, irritações nas mucosas, hipersensibilidade		
Fungicidas	Ditiocarbamatos	Tonteiras, vômitos, tremores musculares, dor de cabeça	Alergias respiratórias, dermatites, Doença de Parkinson, cânceres		
	Fentalamidas	-	Teratogeneses		
	Dinitroferóis e pentaciclorofenol	Dificuldade respiratória, hipertermia, convulsões	Cânceres (PCP-formação de dioxinas), cloroacnes		
Herbicidas	Fenoxiacéticos	Perda de apetite, enjôo, vômitos, fasciculação muscular	Indução da produção de enzimas hepáticas, cânceres, teratogeneses		
	Dipiridilos	Sangramento nasal, fraqueza, desmaios, conjuntivites	Lesões hepáticas, dermatites de contato, fibrose pulmonar		

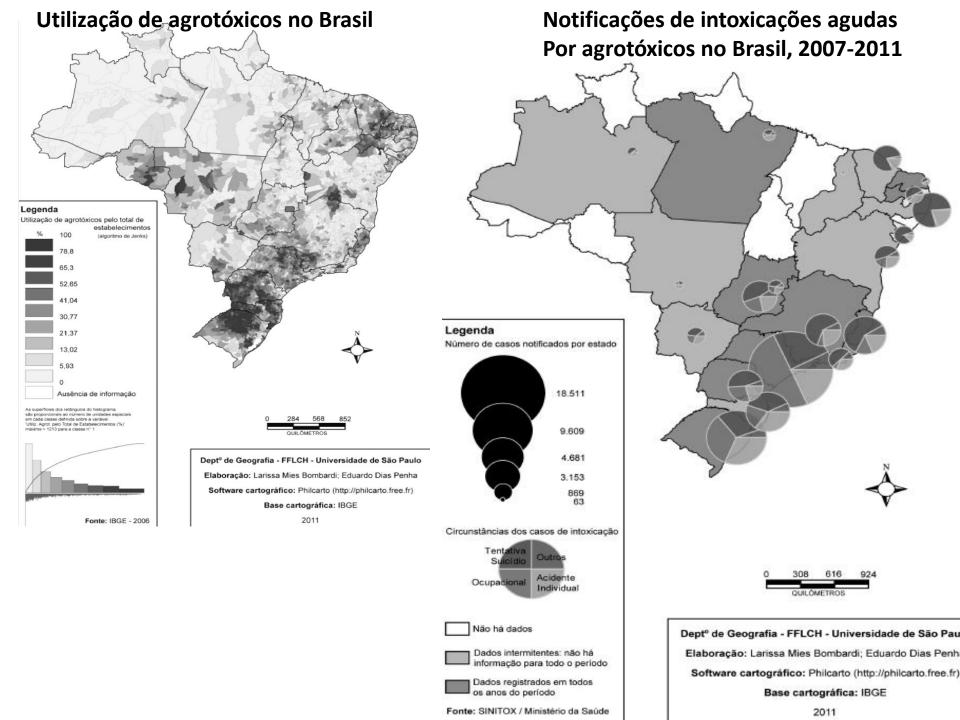
OPAS 1996; Peres F e Moreira JC, editora FIOCRUZ 2003; Dossiê I e II da ABRASCO.


Agrotóxicos	Problemas relacionados	Proibido ou restrito
Abamectina	Toxicidade aguda e suspeita de toxicidade reprodutiva do IA e de seus metabólitos	Comunidade Européia - proíbido
Acefato	Neurotoxicidade, suspeita de carcinogenicidade e de toxicidade reprodutiva e a necessidade de revisar a Ingestão Diária Aceitável.	Comunidade Européia- proíbido
Carbofurano	Alta toxicidade aguda, suspeita de desregulação endócrina	Comunidade Européia, Estados Unidos- proíbido
Cihexatina	Alta toxicidade aguda, suspeita de carcinogenicidade para seres humanos, toxicidade reprodutiva e neurotoxicidade	Comunidade Européia, Japão, Estados Unidos, Canadá- proíbido Proibido no BR a partir de out2010
Endossulfam	Alta toxicidade aguda, desregulação endócrina e toxicidade reprodutiva.	Comunidade Européia- proíbido. Na India proibido e só esta autorizada a fabricação. Proibido no BR a partir jul2013
Forato	Alta toxicidade aguda e neurotoxicidade	Comunidade Européia, Estados Unidos- proíbido
Fosmete	Neurotoxicidade	Comunidade Européia- proíbido
Glifosato	Casos de intoxicação, solicitação de revisão da Ingesta Diária Aceitável (IDA) por parte de empresa registrante, necessidade de controle de impurezas presentes no produto técnico e possíveis efeitos toxicológicos adversos	Revisão da Ingesta Diária Aceitável (IDA)
Lactofem	Carcinogênico para humanos	Comunidade Européia- proibido
Metamidofós	Alta toxicidade aguda e neurotoxicidade.	Comunidade Européia, China, Índia- proibido. Proibido no BR a partir jul2012
Paraquate	Alta toxicidade aguda e toxicidade pulmonar e renal	Comunidade Européia- proibido
Parationa Metílica	Neurotoxicidade, suspeita de desregulação endócrina, mutagenicidade e carcinogenicidade	Com. Européia, China- proibido
Tiram	Estudos demonstram mutagenicidade, toxicidade reprodutiva e suspeita de desregulação endócrina	Estados Unidos- proibido
Triclorfom	Neurotoxicidade, potencial carcinogênico e toxicidade reprodutiva	Comunidade Européia- proibido. proibido no BR a partir de 2010

Fontes: Anvisa/RDC 10/2008; Anvisa/RDC 34/2009; Anvisa/RDC 28/2010; Anvisa/RDC 37/2010; Anvisa/RDC 01/2011;


Intoxicações agudas por tipo de agrotóxico no Brasil, 2007 a 2011

Intoxicações e Óbitos	2007	2008	2009	2010	2011
Raticida	1920	2238	2749	3382	3949
Agrícola	2093	2308	2691	2929	2900
Doméstico	418	531	751	855	951
Veterinário	320	435	462	570	688
Saúde Pública	106	77	156	165	211
Total Intox. Agrotóxicos	4857	5589	6809	7901	8699
Óbitos por agrotóxicos	207	217	256	332	325
Total de outras intoxicações	20760	25906	33619	39619	51151

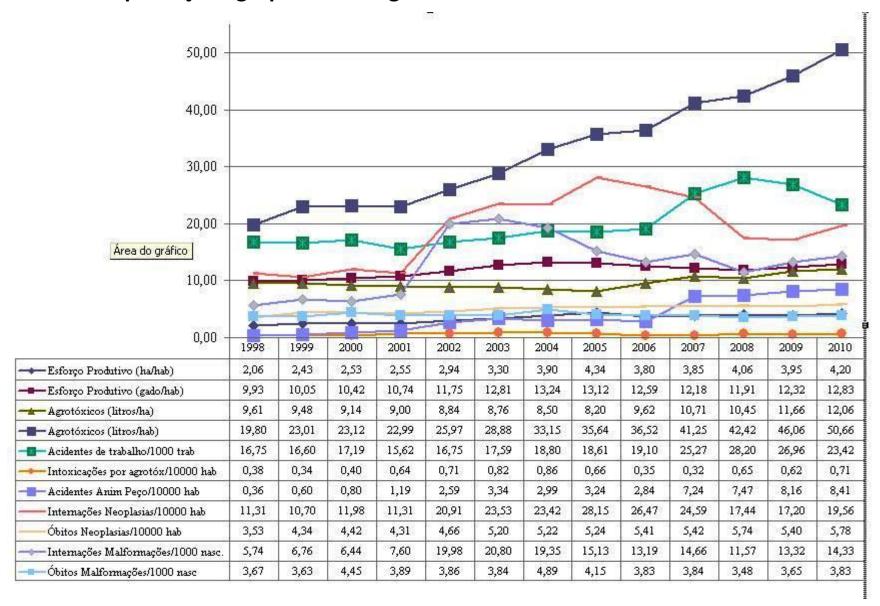

Número de intoxicações agudas por tipo/ano/Brasil

Fonte: SINAN, 2012

Fonte: SINAN, 2012

Lavouras temporárias e consumo de agrotóxicos por municípios no MT em 2010 Agrotóxicos consumidos / 2010 Comer-06 até 10.000 10.000 -- | 100.000 100.000 -- | 400.000 400.000 -- | 1.000.000 1.000.000 -- | 2.900.000 2.900.000 -- | 7.558.877 **Total consumido** 113.324.479 litros Lavouras em hectares em 2010 Total de 9,46 milhões de hectares até 6.600 6.600 -- | 132.300 132,300 -- 264,400 264.400 -- 396.500 396.500 -- | 528.600 528.600 -- | 660.726

Notificação de Intoxicação por Agrotóxicos por Regional de Saúde em Mato Grosso, 2006 - 2010


9.	··· ·······	O . C OCC,		0.0					
Mun Resid MT	2006	2007	2008	2009	2010	Total			
01 ERS Cuiabá	5	1	1	5	9	21			
02 ERS Rondonópolis	-	9	13	19	29	70			
03 ERS Barra do Garças	7	6	5	5	5	28			
04 ERS Cáceres	3	-	1	4	2	10			
05 ERS Juína	-	5	13	8	4	30			
06 ERS Porto Alegre Norte	-	1	2	-	2	5			
07 ERS Sinop	12	14	35	28	20	109			
08 ERS Tangará da Serra	11	18	22	18	14	83			
09 ERS Diamantino	5	2	2	15	1	25			
10 ERS Alta Floresta	2	6	4	15	1	28			
11 ERS Juara	3	2	-	2	7	14			
13 ERS Agua Boa	1	3	5	2	4	15			
14 ERS Pontes de Lacerda ₂₅	_	4	1	-	1	6			
15 ERS Colider	5	1	A -	-	2	8			
16 ERS São Félix Araguaia	2	7	1	1	-	11			
Total	16	79	105	122	101	463		^	/ _
Fonte: SINAN/SUVSA/SES-MT									
0	Janeiro	Fevereiro	Marco	Abril	Maio Ju	nho Julho	Agosto Set	tembro Outubro	Novembro

Fonte: SINAN/SUVSA/SES-MT

TIPOS DE AGROTÓXICOS USADOS EM MT	Uso	Classe Toxicológica ¹	Média Anual 2005 a 2010
GLIFOSATO	Herbicida	IV - Pouco Tóxico	23.844.641
METAMIDOFÓS	Inseticida	I - Extremamente Tóxico	6.023.458
ENDOSSULFAM	Inseticida	I - Extremamente Tóxico	5.058.453
2,4 D	Herbicida	I - Extremamente Tóxico	4.363.291
ÓLEO MINERAL	Inseticida	IV - Pouco Tóxico	4.025.795
TEBUCONAZOL	Fungicida	IV - Pouco Tóxico	4.024.942
ATRAZINA	Herbicida	III - Medianamente Tóxico	3.019.684
METOMIL	Inseticida	I - Extremamente Tóxico	2.734.160
PARATIONA METÍLICA	Inseticida	III - Medianamente Tóxico	1.668.894
CARBENDAZIM	Fungicida	III - Medianamente Tóxico	1.497.100
LACTOFEM	Herbicida	III - Medianamente Tóxico	1.428.468
CARBOSULFAN	Inseticida	II - Altamente Tóxico	1.221.763
IMAZETAPIR	Herbicida	III - Medianamente Tóxico	1.134.964
PYRACLOSTROBIN	Fungicida	II - Altamente Tóxico	1.064.344
CLOMAZONA	Herbicida	III - Medianamente Tóxico	1.041.577
HALOXIFOPE P METÍLICO	Herbicida	III - Medianamente Tóxico	1.001.906
CLORPIRIFÓS (CHLORPYRIFOS)	Inseticida	II - Altamente Tóxico	994.269
DIQUAT	Herbicida	III - Medianamente Tóxico	879.092
FENAXAPROP-P-ETHYL	Herbicida	II - Altamente Tóxico	805.041
FLUTRIAFOL	Fungicida	III - Medianamente Tóxico	799.580
AZOXISTROBINA	Fungicida	III - Medianamente Tóxico	783.747
DIURON	Herbicida	III - Medianamente Tóxico	701.609
PARAQUATE	Herbicida	I - Extremamente Tóxico	678.634
FOMESAFEN	Herbicida	III - Medianamente Tóxico	601.509
ACEFATO	Inseticida	III - Medianamente Tóxico	545.824
TRIFLURALINA	Herbicida	III - Medianamente Tóxico	512.108
PERMETRINA	Inseticida	III - Medianamente Tóxico	498.074
TRIFLOXISTROBIN	Fungicida	II - Altamente Tóxico	468.973
TRIFENIL HIDROXIDO DE ESTANHO	Fungicida	I - Extremamente Tóxico	437.229
MONOCROTOFOS*	Inseticida	I - Extremamente Tóxico	425.876
S-METACLORO	Herbicida	III - Medianamente Tóxico	414.116
PROFENOFOS	Inseticida	II - Altamente Tóxico	399.386
CIPERMETRINA	Inseticida	II - Altamente Tóxico	371.183
FLUAZIFOP-P-BUTILICO	Herbicida	III - Medianamente Tóxico	329.643
ETEFOM	Reg Cresc	I - Extremamente Tóxico	327.258
MSMA 36	Herbicida	III - Medianamente Tóxico	318.582
OUTROS (malation, Carbofuran, Zetaciper., etc)			11.476.142
TOTAL – MÉDIA ANUAL DE 2005 A 2010			86.230.412

Fonte: INDEA – MT, 2010 e organizado por Pignati/UFMT. OBS dos 50 mais utilizados, 22 são proibidos na UE

Matriz de produção agropecuária e agravos a saúde no "interior" de Mato Grosso

Fonte: Pignati W e Machado JMH. O agronegócio e seus impactos na saúde dos trabalhadores e da população de MT; In: Gomez, Machado e Pena. Saúde dos trabalhadores na sociedade brasileira contemporânea. RJ: FIOCRUZ, 2011, p 245-272.

Câncer e agrotóxicos, Malformações e agrotóxicos, Suicídios, abôrtos, ...

Curvo HRM. Agrotóxicos, saúde ambiental e câncer no Mato Grosso, UFMT/ISC, 2012;

Ueker ME. Agrotóxicos no MT e malformações atendidas nos hosp Cuiabá, UFMT/ISC, 2012 Bariri - São Paulo, Brasil

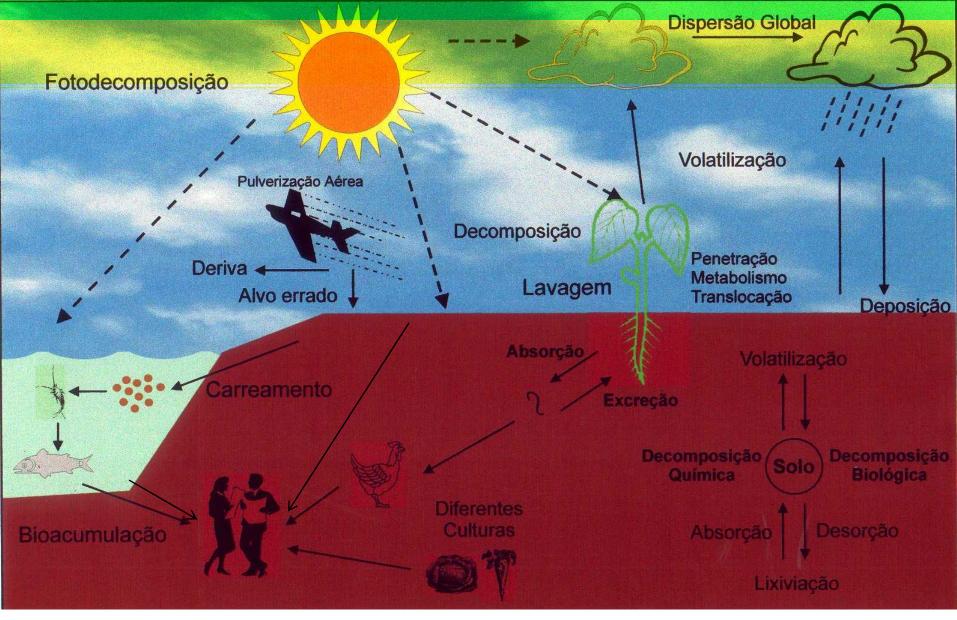
Oliveira NP. malformações e agrotóxicos no "interior" de Mato Grosso, UFMT/ISC, 2012

Stoppelli I. Câncer do Hosp A Camargo-Jaú pacientes X moradia X agrotóx USP/SC, 2005;

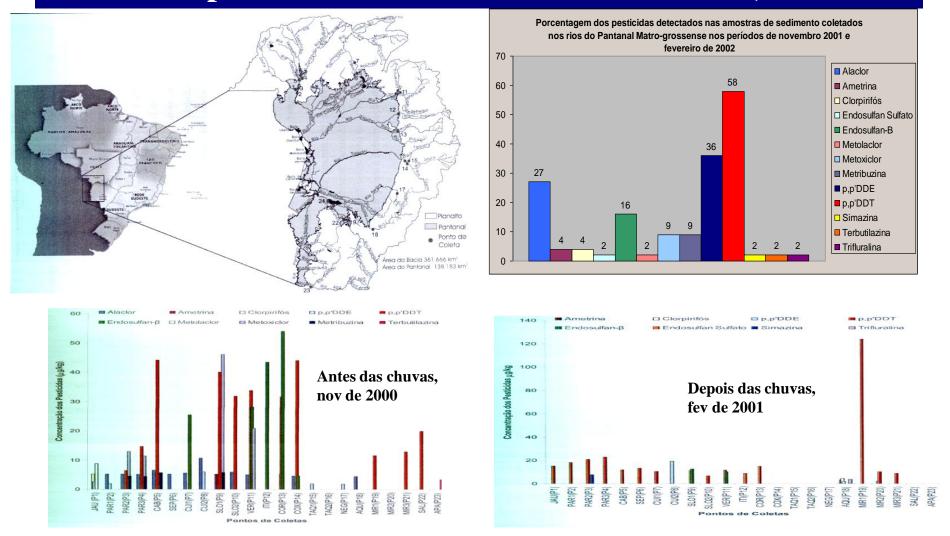
Rigotto R. Casos de câncer em Fortaleza X câncer no interior do Ceará; UFC 2011;

Silva JM. Câncer e uso de agrotóxicos no sudeste de Minas Gerais, UNICAMP; 2008;

Carneiro, Pignati, Rigotto, Augusto. Dossiê I (agrotóxicos, alimentos e saúde), 2012. Augusto, Carneiro, Pignati, Rigotto. Dossiê II (agrotóxicos, ambiente e sustentabilidade). 2012 em www.abrasco.org.br



Recolhimento de embalagens vazias de agrotóxicos



Comportamento e destino dos agrotóxicos no meio ambiente (modificado de GRISOLIA, 2005).

Onde vão parar os milhões de litros de agrotóxicos usados nas lavouras

Determinação de Resíduos de Pesticidas em Sedimentos dos Principais Rios do Pantanal Mato-Grossense, 2001

Fontes: Miranda K, Cunha MLF, Dores EFGC, Calheiros D. Pesticide residues in river sediments from the Pantanal Wetland, Brasil. *Journal of Environmental Science and Health; B* (2008) 43, 717-722; Calheiros D, Dores EFGC. Contaminação por agrotóxicos na bacia do rio Miranda, Pantanal (MS). Revista Brasileira de Agroecologia, Vol.3, Suplemento 202, 2008; Cunha MLF. Determinação de resíduos de pesticidas em sedimentos dos principais rios do pantanal matogrossense. [mestrado], Cuiabá, UFMT, 2006;

Avaliação integrada dos impactos dos agrotóxicos na saúde e ambiente em Lucas do Rio Verde - MT

Lucas do Rio Verde - MT, Brasil

Em 2010, possuía 30 mil habitantes, IDH de 0,818 (3º de MT), plantou 420 mil hectares (soja, milho e algodão) e pulverizou 5,1 milhões de litros de agrotóxicos nas suas lavouras e no entorno da cidade, córregos, vilas e criação de animais.

Fonte: Moreira, Peres, Pignati e Dores. Avaliação do risco à saúde humana decorrente do uso de agrotóxicos na agricultura e pecuária na região Centro-Oeste do Brasil; Relatório de pesquisa CNPq 555193/2006-3, Brasília, CNPq, 2010 Image © 2012 Digital Globe


Google earth

Metodologia da pesquisa da avaliação integrada dos impactos dos agrotóxicos na saúde e ambiente em Lucas do Rio Verde, durante os anos de 2007 a 2010

Treinamento de professores e alunos de 04 Escolas (2 urbanas e 2 rurais) Coletores e coletas de chuva nos pátios das Escolas Coletores e coletas de ar nos pátios das Escolas Coletas de água de poços artesianos/potável das Escolas Coletas de sangue e urina dos professores das Escolas rurais e urbana Coletas de amostras de leite materno Coletas de sapos, sangue e sedimentos de lagoas e malformações Análises de resíduos de 27 P.A. de agrotóxicos (cromatografia gás e massa) Coleta de solo contaminados com glifosato e 2.4D e minhocas de laborat. Entrevistas para percepção de risco e vigilância em saúde Análise epid dados: intox, malform, cânceres, d.resp. aguda, abortos, ... Elaboração de cartilha em conjunto com os alunos Audiências públicas na Câmara e envio de dados à Prefeitura e MPE Movimento contra o uso e abuso de agrotóxicos

Fonte: Moreira, Peres, Pignati e Dores. Avaliação do risco à saúde humana decorrente do uso de agrotóxicos na agricultura e pecuária na região Centro-Oeste do Brasil; Relatório de pesquisa CNPq 555193/2006-3, Brasília, CNPq, 2010

Produção agrícola de Lucas do Rio Verde, 1999 a 2010; em mil hectares

Lucas do Rio Verde	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Algodão herbáceo	3,4	12,0	9,9	10,7	6,0	5,0	15,0	9,8	7,1	15,0	11,1	8,1
Arroz	6,0	37,0	8,0	3,0	2,3	1,4	1,8	1,7	0,8	0,2	0,3	0,5
Borracha	0,0	0,0	0,0	0,0	0,0	0,3	0,3	0,3	0,0	0,0	0,3	0,3
Café (em grão)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Cana-de-açúcar	0,0	0,0	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Feijão (em grão)	0,0	0,3	0,3	0,3	0,3	0,3	0,3	0,5	0,1	1,0	1,0	1,1
Mandioca	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Milho (em grão)	36,1	62,9	71,0	77,5	122,5	140,0	100,3	146,2	147,1	175,1	160,5	147,1
Soja (em grão)	140,0	152,5	160,0	175,0	180,0	200,5	216,2	221,9	224,4	215,5	225,8	236,6
Sorgo (em grão)	0,0	4,0	8,0	7,0	3,0	10,0	7,0	2,5	3,8	5,0	8,3	8,3
Trigo (em grão)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Citrus	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Outros	0,1	0,1	1,3	0,2	0,2	0,1	0,1	0,2	1,6	0,6	2,1	7,7
Total	185,6	268,8	258,6	273,7	314,3	357,7	341,0	383,2	384,9	412,4	409,4	409,7

Produção pecuária de Lucas do Rio Verde, 1999 a 2010; em mil cabeças

Lucas do Rio Verde	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Bovino	33,3	33,3	27,5	25,0	24,8	20,5	17,0	15,5	15,5	27,8	16,5	9,7
Suíno	25,4	26,1	30,9	32,0	54,6	33,0	82,1	86,4	95,0	107,0	133,6	157,0
Frangas, frangos e pintos	16,6	17,9	18,6	19,2	19,7	19,7	39,7	20,7	22,8	42,0	66,1	91,0
Galinhas	47,9	50,3	52,3	53,8	55,4	55,4	55,4	58,2	64,0	23,2	23,2	23,2
Outros	2,2	2,3	2,4	2,4	2,4	2,7	2,7	2,8	3,0	3,3	3,8	4,4
Total	125,3	129,8	131,6	132,5	157,0	131,4	197,0	183,6	200,4	203,3	243,2	285,3

Consumo de Agrotóxicos na agropecuária de Lucas do Rio Verde, 1999 a 2010; em milhões de Litros

 Lucas do Rio Verde
 99 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

 Agrotóxico
 (milhões/litros)
 1,9 2,4 2,4 2,6 3,0 3,3 3,3 3,7 4,2 4,1 4,5 5,1

TIPOS DE AGROTÓXICOS USADOS em LUCAS DO RIO VERDE	Uso	Classe Toxicológica	Média de consumo anual 2005 a 2010
glifosato	Herbicida	IV - POUCO TÓXICO	1.261.957
atrazina	Herbicida	III - MEDIANAMENTE TOXICO	390.061
metamidofós	Inseticida	I - EXTREMAMENTE TÓXICO	381.438
endosulfam	Inseticida	I - EXTREMAMENTE TÓXICO	216.950
2,4-D	Herbicida	I - EXTREMAMENTE TÓXICO	184.970
diquat	Herbicida	III - MEDIANAMENTE TOXICO	141.005
S-metolacloro	Herbicida	I - EXTREMAMENTE TÓXICO	87.120
paration metilico	Inseticida	I - EXTREMAMENTE TÓXICO	77.497
acefato	Inseticida	III - MEDIANAMENTE TOXICO	73.280
clorpirifós	Inseticida	II - ALTAMENTE TÓXICO	47.145
paraquate	Herbicida	I - EXTREMAMENTE TÓXICO	28.643
trifluralina	Herbicida	III - MEDIANAMENTE TOXICO	23.094
permetrina	Inseticida	III - MEDIANAMENTE TOXICO	22.985
cipermetrina	Inseticida	II - ALTAMENTE TÓXICO	19.636
malationa	Inseticida	III - MEDIANAMENTE TOXICO	11.911
msma	Herbicida	III - MEDIANAMENTE TOXICO	9.860
fipronil	Inseticida	II - ALTAMENTE TÓXICO	8.047
carbofuran	Inseticida	I - EXTREMAMENTE TÓXICO	3.981
deltametrina	Inseticida	III - MEDIANAMENTE TOXICO	1.179
outros	vários	vários	1.333.935
Total			4.329.486

Fonte: INDEA – MT, 2011; Moreira et al Relatório CNPq 2010; Organizado por Pignati - UFMT

Número de amostras positivas e intervalos de concentração para agrotóxicos analisados em águas superficial (rios), poço art/potável (escolas) e chuva (escolas) coletadas em Lucas do Rio Verde e analisadas por CG/EM. Coletadas entre set.2007 e abr.2009.

	Água	Superficial	Poços ai	rtes. (potável)	Água	a de chuva
Agrotóxicos	N=34 Amostras positivas:	Concentração (µg L ⁻¹)	N=62 Amostras positivas:	Concentração (μg L ⁻¹)	N=104 Amostras positivas:	Concentração (μg L ⁻¹)
Atrazina	3	0,02 – 4,90	2	0,01-0,02	45	0,01 – 47,21
DEA	-	ND	1	0,02	22	0,01 - 13,84
Deltame.	-	ND	-	ND	-	ND
DIA	-	ND	-	ND	-	ND
Cipermetr	-	ND	-	ND	5	0,02-0,52
Clorpirifós	4	0,02-0,12	4	0,01 - 0,04	31	0,01-0,88
Endosulf α	9	0,71 - 0,83	13	0,01-0,82	40	0,01-1,15
Endosulf β	7	0,30-0,40	12	0,02-0,26	43	0,01-0,87
Endosulf S	5	0,01-0,10	-	ND	40	0,01 - 0,58
Flutriafol	10	0,01-0,20	12	0,03 - 0,34	58	0,02-0,93
Malation	3	0,05 - 8,83	-	ND	25	0,01 –3,36
Paration M	-	ND	-	ND	7	0,02-2,45
Metoloclor	11	0,01-0,24	8	0,01-0,59	43	0,01-2,43
Monocrotof	-	ND	-	ND	29	0,01-41,35
Permetrina	1	1,40	2	0,19	1	0,13
Trifluralina	-	ND	-	ND	-	ND

Fonte: Moreira, Peres, Simões, Pignati, Dores, Vieira, Strusmann, Mott. Contaminação de águas superficiais e de chuva por agrotóxicos em uma região do MT. Ciência & Saúde Coletiva, 17(6):1557-1568, 2012.

Níveis dos resíduos de agrotóxicos analisados em amostras de ar coletados em 04 pontos de Escolas em Lucas do Rio Verde – MT. datas de coleta: out.2008 a mar.2009; Total de amostras: 61.

Local de Coleta	Data	Concentração (ng.m ⁻³)
	3/12/2008	¹ β-endossulfam - <lqm< td=""></lqm<>
W. 1. 1. D. 1.4	5/2/2009	$^2\alpha$ -endossulfam - <lqm< td=""></lqm<>
Unidade Rural 1	19/2/2009	³ Atrazina - <lqm< td=""></lqm<>
	26/2/2009	α -endossulfam – <lqm< td=""></lqm<>
	3/12/2008	α-endossulfam – <lqm< td=""></lqm<>
Centro	22/1/2009	α -endossulfam – <lqm< td=""></lqm<>
	5/2/2009	α -endossulfam – <lqm< td=""></lqm<>
	12/2/2009	α -endossulfam – <lqm< td=""></lqm<>
Controlnoviforio	19/2/2009	α -endossulfam – <lqm< td=""></lqm<>
Centro/periferia	26/2/2009	α -endossulfam – <lqm< td=""></lqm<>
	20/2/2009	Atrazina - <lqm< td=""></lqm<>
	19/2/2009	α-endossulfam – <lqm< td=""></lqm<>
Unidade Rural 2	5/3/2009	Atrazina – <lqm< td=""></lqm<>
Omuaue Kurai 2	19/3/2009	Atrazina <lqm< td=""></lqm<>
	27/3/2009	α-endossulfam – <lqm< td=""></lqm<>

 $^{^{1}}$ LQM - 31,0 ng.m $^{-3}$: 2 LQM - 31,4 ng.m $^{-3}$: 3 LQM - 31,4 ng.m $^{-3}$

Fonte: Santos, Lourencetti, Pinto, Pignati, Dores; Validation and application of an analytical method for determining pesticides in the gas phase of ambient air. Journal of Environmental Science and Healt; B(2011) 46, 150-162

Resultados das análises de resíduos de agrotóxicos em exames de urina e sangue de professores urbanos e rurais de Lucas do Rio Verde MT. Amostras colhidas em mar.2009; N total de amostras: 79;

Tipo de amostra	Agrotóxicos	Amostras	positivas	Médi	as	Intervalo
		Urbana	Rural	Urbana	Rural	
Thing	Glifosato	35	35	1,07	1,92	0,41 - 22,31 ppb
Urina	Piretróides	35	34	4,20	2,30	0,21 - 5,05 ng/ml
	Aldrin	-	4	-	0,25	0,7 -4,41 ng/ml
	p,p'DDE	18	24	2,35	2,60	0,16 - 16,91 ng/ml
Sangue	o,p'DDT	-	1	-	0,01	0,4 ng/ml
	p,p'DDT	-	5	-	0,13	0,48 - 1,65 ng/ml
	Mirex	2	16	0,10	0,50	0,31 - 4,34 ng/ml

Métodos: glifosato na urina por Elisa, piretróide na urina por cromatografia e clorados no sangue por cromatografia Estudos: até 0,32ng/ml de piretróide na urina e 2ng /ml de OC no plasma em população não expostas.

Fonte: Moreira et al Relatório CNPq 2010; Belo, Pignati, Dores, Moreira, Peres. Uso de agrotóxicos na produção de soja no MT: um estudo preliminar de riscos ocupacionais e ambientais. Rev.bras.saúde ocup. Vol.37, n.125, p78-88, 2012.

Resíduos de agrotóxicos em amostras de leite materno de mães residentes em Lucas do Rio Verde-MT em 2010;

FONTE: Danielly R. Palma; mestrado; UFMT/ISC; Cuiabá, 2011.

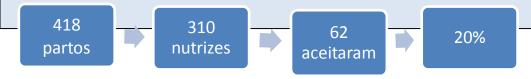


Tabela 1. Frequência de detecção de agrotóxicos analisados em leite de 62 nutrizes de Lucas do Rio Verde-MT, em 2010.

% de detecção

Substância

Substantia	70 ac actecção
p,p'- DDE	100
β-endossulfam	44
Deltametrina	37
Aldrim	32
α -endossulfam	32
α-HCH	18
p,p'- DDT	13
Trifluralina	11
Lindano	6
Cipermetrina	0

Tabela 2 - Número de substâncias detectadas em leite humano de uma amostra (n=62) de mães residentes em Lucas do Rio Verde-MT em 2010.

Lucas do Rio Verde-IVIT em	1 2010.		
Número de substâncias	n	Frequência	%
detectadas nas amostras			
1	9	0,15	15
2	18	0,29	29
3	12	0,19	19
4	15	0,24	24
5	7	0,11	11
6	1	0,02	2
TOTAL	62	1,00	100

Tabela 3. Níveis de resíduos de agrotóxicos em leite de uma amostra de mães residentes em Lucas do Rio Verde-MT em $\mu g \, m L^{-1}$ de leite.

Substância	%	Média	Valores	Valores
		(μg mL ⁻¹)	máximos	mínimos
β-endossulfam	3,23	0,018	0,020	0,016
p,p'- DDT	4,84	0,033	0,045	0,019
p,p'- DDE	29,03	0,150	0,621	0,024

Tabela 4. Níveis de resíduos de agrotóxicos na gordura de leite de uma amostra de mães residentes em Lucas do Rio Verde-MT em ug g⁻¹ de gordura.

Substância	%	Média	Valores máximos	Valores mínimos
β-endossulfam	3,23	(μg g ¹) 0,57	0,61	0,54
p,p'- DDT	4,84	1,01	1,42	0,3
p,p'- DDE	29,03	4,29	12,97	0,6

Pulverizações de agrotóxicos na lavouras em Lucas do Rio Verde – MT e os agravos respiratórios em crianças menores de 5 anos de idade no período de 2004 a 2009.

- Os agravos respiratórios em crianças menores de 5 anos tiveram associação com uso de agrotóxicos nas lavouras de Lucas do Rio Verde, principalmente nos períodos de maior intensidade de aplicação;
- Meses de maiores aplicação: outubro a janeiro na safra da soja e fevereiro a maio na safra do milho e algodão;
- Na intersafra (junho a setembro) há uma diminuição da hiperendemia das safras. Nível na safra foi 5x > q cidade SP;
- Foram considerados as internações e atendimentos no PS e ambulatoriais com nebulização.

Fonte: Kaline A.S.Fávero, mestrado Saúde Coletiva, UFMT/ISC, 2011

Matriz de indicadores de agravos à saúde da população de Lucas do Rio Verde - MT ; 1998 a 2007 .

Grupos/anos	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
Indicadores										
Esforço produtivo (hectare/habit)	13,55	16,23	12,90	12,77	14,16	14,96	13,65	13,97	13,03	13,72
Esforço produtivo (bois/habit)	2,28	2,15	1,43	1,20	1,13	0,88	0,70	0,57	0,54	0,92
Agrotóxicos (litros/habitante)	130,33	156,11	124,11	122,82	136,19	143,92	131,31	134,33	146,29	136,35
Acidentes de trabalho/1.000 trabalhad	11,05	11,09	11,53	10,48	10,35	9,68	13,98	13,35	13,71	15,89
Intox. aguda por Agrotox/10.000habit	0,00	0,00	0,00	0,48	0,46	0,00	0,41	0,37	0,00	0,33
Acid. com Anim Peçonha/10.000habit	0,00	0,00	0,52	1,44	1,82	0,43	0,82	2,57	0,35	0,33
Interação por Neoplasia/10.000habit	3,43	7,12	8,28	7,67	12,29	9,91	51,57	52,17	46,43	44,58
Óbitos por Neoplasia/10.000habit	3,43	6,47	1,55	4,79	5,46	4,74	4,09	4,78	3,84	3,66
Internação Malform/1.000 nasc <1ano	0,00	0,00	2,53	9,83	7,06	1,96	7,21	3,28	1,82	8,50
Internação Malform/1.000nascid vivos	0,00	5,45	10,10	22,11	18,82	11,79	32,43	13,11	18,25	22,11
Óbitos Malform/1.000 nasc<01ano	0,00	5,45	2,53	2,46	2,35	0,00	3,60	1,64	1,82	5,10
Óbitos Malform/1.000 nascid vivos	0,00	5,45	2,53	2,46	2,35	0,00	5,41	1,64	3,65	6,80
Inter Agravos Resp/100hab < 5anos	2,60	2,20	1,57	1,67	3,57	4,03	6,12	3,57	4,26	4,32
Inter Agravos Resp/100hab total	0,59	0,38	0,34	0,81	1,15	1,16	1,42	0,75	0,86	1,18
Suicídios/10000 habitantes	0,00	0,00	0,52	0,96	0,00	0,43	0,82	1,10	0,70	0,33

Fontes: SIM, SINASC, SINAN/SES-MT, CAT-MPS, AIH-DATASUS, IBGE, INDEA-MT; Moreira et al. 2010 Relatório CNPq;

Análises de resíduos de agrotóxicos em amostras de sangue de 36 anfíbios (sapos e rãs) coletados em cursos d'águas em Lucas do Rio Verde MT e em lagoa controle e indivíduos malformados. (coletados em fev.2010)

AGROTÓXICOS	LAGOA Xixi (N=20)	CÓRREGO Cedro (N=16)	CONTROLE (n=33)
а-НСН	0,75 ng/ml	0,45 ng/ml	ND
b-НСН	1,08 ng/ml	0,26 ng/ml	ND
Dieldrin	-	0,20 ng/ml	ND
Endosulfan α	0,24 ng/ml	-	ND
Endosulfan β	2,82 ng/ml	2,44 ng/ml	ND
Endrin	2,88 ng/ml	-	ND
Heptaclor	0,71 ng/ml	-	ND
Mirex	1,16 ng/ml	0,35 ng/ml	ND
o,p – DDD	0,34 ng/ml	0,45 ng/ml	ND
PCB Tetraclorobifenil	0,46 ng/ml	0,77 ng/ml	ND
anfíbios malformado		4	2
% de malformados	30%	25%	6%

Fonte: Moreira, Peres, Simões, Pignati, Dores, Vieira, Strusmann, Mott. Contaminação de águas superficiais e de chuva por agrotóxicos em uma região do MT. Ciência & Saúde Coletiva, 17(6):1557-1568, 2012.

Resultado de análises de resíduos de agrotóxicos em amostras de sedimentos (SD) e água superficial (AS) da lagoa do Xixi em Lucas do Rio Verde-MT e em lagoa controle (SD 6 e 7 e AS 6 e 7)

Agrotóxicos	SD 1	SD2	SD3	SD4	SD5	SD6	SD7	AS-1	AS-2	AS-3	AS-4	AS-5	AS-6	AS-7
DIA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trifluralina	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Atrazina	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>0,18</th><th>0,18</th><th>0,26</th><th>0,26</th><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>0,18</th><th>0,18</th><th>0,26</th><th>0,26</th><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>0,18</th><th>0,18</th><th>0,26</th><th>0,26</th><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>0,18</th><th>0,18</th><th>0,26</th><th>0,26</th><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th>0,18</th><th>0,18</th><th>0,26</th><th>0,26</th><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	ND	ND	0,18	0,18	0,26	0,26	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Metil parati.	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Malation	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Metolaclor	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Clorpirifós	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>0,14</th><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>0,14</th><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>0,14</th><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>0,14</th><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>0,14</th><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	ND	ND	ND	ND	0,14	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Endosulf. alfa	0,25	0,74	<lqm< th=""><th><lqm< th=""><th>0,42</th><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>0,42</th><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	0,42	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Flutriafol	<lqm< th=""><th>0,49</th><th>0,25</th><th>0,36</th><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	0,49	0,25	0,36	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Endosulf. beta	0,54	0,38	<lqm< th=""><th><lqm< th=""><th>0,93</th><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>0,93</th><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	0,93	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Endosulf. Sulf	0,16	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Permetrina	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Cipermetrina	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	ND	ND	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND
Deltametrina	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<></th></lqm<>	<lqm< th=""><th><lqm< th=""><th>ND</th><th>ND</th></lqm<></th></lqm<>	<lqm< th=""><th>ND</th><th>ND</th></lqm<>	ND	ND

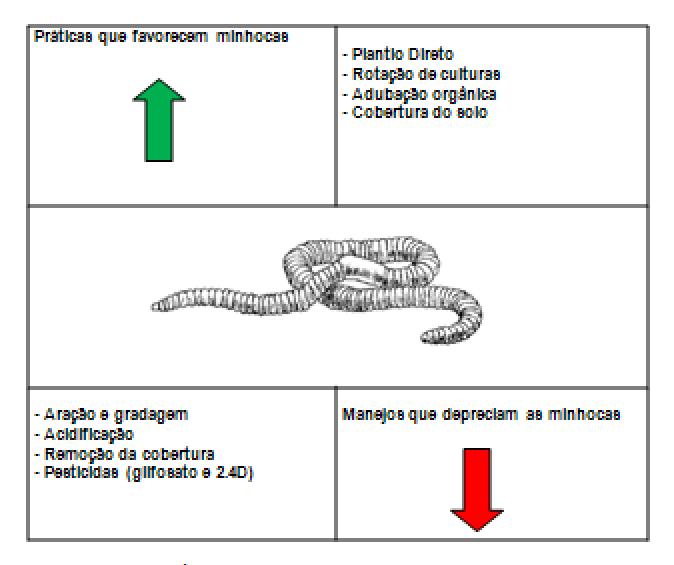
Obs: **Pontos de coleta:** 1 - lado direito da lagoa; 2 - fundo da lagoa; 3 - lado esquerdo da lagoa; 4 - aterro de passagem dos carros; 5 - meio da lagoa; 6 - lado esquerdo (lado da estrada); 7 - lado direito (próximo à mata); **resultados** em µg/kg de sedimento e µg/litro de água

ND Não Detectado

<LQM Abaixo do Limite de Quantificação do Método

Fonte: Moreira, Peres, Simões, Pignati, Dores, Vieira, Strusmann, Mott. Contaminação de águas superficiais e de chuva por agrotóxicos em uma região do MT. Ciência & Saúde Coletiva, 17(6):1557-1568, 2012.

Radiografias e aspectos morfológicos de anfíbios com malformações coletados me lagoas e córregos em Lucas do Rio Verde MT, em 2009



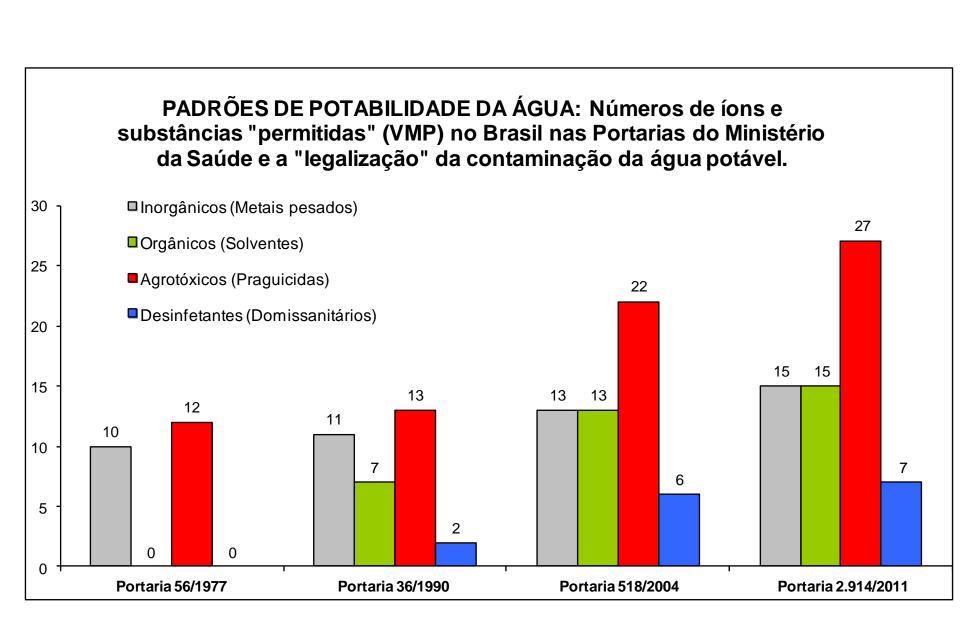
Ectromelia do Tibulare-fibulare em Rhinella schneideri. 2a- Aspecto radiográfico; 2b- Vista ventral; 2c- Vista dorsal; 2d- Vista geral.
Rodrigues et al 2009. Congr Bras de Herpetologia

Fonte: UFMT/Bio/Motti, 2010; in Moreira et al.2010 Relatório CNPq

A literatura científica nos informa que malformações em anfíbios podem ocorrer por vários fatores ambientais (radiação ultravioleta, ação de parasitos e agrotóxicos).

Efeitos do manejo agrícola sobre a atividade de minhocas no solo

FONTE Correia FV & Moreira JC (ENSP/FIOCRUZ); effects of glyfosate and 2.4-D on earthworms in laboratory tests; Bull Environ Contam Toxicol; 2010, 85: 264-268


Evidencias científicas da Avaliação integrada dos impactos dos agrotóxicos na saúde e ambiente em Lucas do Rio Verde – MT:

- Pignati, Machado, Cabral. Acidente rural ampliado: o caso da "chuva" de agrotóxicos sobre a cidade de Lucas do Rio Verde – MT. Ciência & Saúde Coletiva, 12(1):105-114, 2007;
- Machado, P. Um avião contorna o pé de jatobá e uma nuvem de agrotóxicos pousa na cidade. Brasília, Editora MS, ANVISA-MS, 2008, 164 p.
- Moreira, Peres, Pignati e Dores. Avaliação do risco à saúde humana decorrente do uso de agrotóxicos na agricultura e pecuária na região C-O do Brasil; Relatório CNPq 555193/2006-3, Brasília, CNPq, 2010.
- Moreira, Peres, Simões, Pignati, Dores, Vieira, Strusmann, Mott. Contaminação de águas superficiais e de chuva por agrotóxicos em uma região do MT. Ciência & Saúde Coletiva, 17(6):1557-1568, 2012.
- Santos, Lourencetti, Pinto, Pignati, Dores. Validation and appication of an analytical method for determining pesticides in the gas phase of ambient air. Journal of Environmental Science and Healt; B(2011) 46, 150-162.
- Palma DR. Agrotóxicos em leite de mães residentes em Lucas do Rio Verde MT. [dissertação de mestrado]. Cuiabá, UFMT/ISC, 2011.
- Fávero KAS. Pulverizações de agrotóxicos nas lavouras de Lucas Rio Verde e os agravos respiratórios em < de 05 anos. [dissertação mestrado]. Cuiabá, UFMT/ISC, 2011.
- Belo, Pignati, Dores, Moreira, Peres. Uso de agrotóxicos na produção de soja no MT: um estudo preliminar de riscos ocupacionais e ambientais. Rev.bras.saúde ocup. Vol.37, n.125, p78-88, 2012.
- Ueker ME. Exposição aos agrotóxicos no MT e malformações congênitas em menores de 05 anos atendidas em hospitais de Cuiabá [dissertação de mestrado], UFMT/ISC, 2012.
- Oliveira NP. Malformações cong. e uso de agrotóxicos em municípios de MT; mestrado, UFMT/ISC, 2012
- Cunha, MLON. Mortalidade por câncer e a utilização de pesticidas no estado de Mato Grosso. (Dissertação de Mestrado), São Paulo: Faculdade de Medicina da Santa Casa de São Paulo, 2010.

Monitorando ou legalizando a contaminação ???

- 1 LMR = VMP = Permitido = legalização da poluição da ÁGUA POTÁVEL: (metais, solventes, agrotóxicos, desinf domiciliar); Portaria 2914/11, Portaria 518/04/MS, Portaria 03/90, Portaria 56/77;
- 2 Exemplo: glifosato na água: 500µg/L porem na União Européia é 200µg/L e máx de 05 agrotóx e o VMP total é 500µg/L (diretiva83/98) Mas no BR não há máx.total e permite usar nos mananciais e ETA's.
- 3 ÁGUAS superf e subterrâneas: Res 357/05 e 396/08 (CONAMA);
- 4 VMP de agrotóxicos permitidos nos 20 alimentos do PARA/MS;
 5 Monografias da ANVISA; ex: glifosato na soja era 0,2 mg/kg até
- 2003, mas foi para 10mg/kg;

 6 Gov. quer incluir metais e la VMB nes misroputri de fortiliz quim
- 6 Gov. quer incluir metais e... e VMP nos micronutri de fertiliz quim
 7 Na chuva, no ar, no leite materno humano???; não permitidos.
- 8 No Leite de Vaca vários são permitidos até o VMP;
- 9 Deriva = culpabilização do clima ou ato inseguro do trabalhador;
- 10 Aplicação de agrotóxicos = poluição ambiental intencional;
- 11 Uso seguro de aplicação de agrotóxicos = markting de venda ou Seguro para quem??? Para o homem se usar EPI igual de astronauta. E para os alimentos?? E no entorno?? E para o Ambiente???

"Legalização" da contaminação por elementos químicos dos fertilizantes, micronutrientes e seus contaminantes industriais:

- 1 MAPA quer aumentar os níveis permitidos (VMP) de N, P e K nos alimentos;
- 2 MAPA quer aumentar os níveis dos micronutrientes permitidos (VMP) e incluir outros;
- 3 MAPA e CONAMA querem incluir e estabelecer VMP de contaminantes de micronutrientes como o arsênio, cádmio, chumbo, cromo, manganês, mercúrio, organoclorados, dioxinas e furanos.
- 4 Parecer do GT Saúde e Ambiente da ABRASCO dessas pretensões do CONAMA e MAPA no Dossiê I da ABRASCO sobre agrotóxicos, alimentos e saúde de 30abr2012 (WNRio), p 82-89.

transgênicos:

- o que são?
- resistência?
- produtividade?
- malefícios?

a SOJA transgênica é resistente ao glifosato (RR);

e se usa mais deste tóxico;

e se desseca com outro tipo de agrotóxico extremamente tóxico (diquat ou paraquat).

MILHO, TOMATE, ARROZ ???

Quem monitora?? e Avalia??? Quem coloca o T nos rótulos??

SUGESTÕES para diminuir os impactos dos agrotóxicos na saúde e ambiente:

- 1. Imediata implantação da vigilância à saúde completa (epid; sanit; ambi; trab; farmacológ. e nutric.). Participativa e integrada (saúde, agricultura, ambiente, educação). Implantar a nível nac. um Sist. de Informação de venda/uso agrotx.
- 2. Cumprir o código florestal, a Lei 7802/89, o decreto 4074/02 e a IN 02/08/MAPA de pulveriz.aérea a 500m e dec 2283/09/MT de 300m na terrestre de moradias, fontes de águas e criação de animais. Cumprir a NR 31. Ir além da "deriva" e do uso seguro. Proibir as pulverizações aéreas de agrotóxicos. Proibir no BR os agrotóxicos proibidos na União Européia. Acabar com subsídios nos impostos.
- 3. Monitoramento de resíduos de agrotóxicos, fertilizantes, metais e solventes em água potável, rios, lagos e pantanal. Cumprir a portaria 2914/MS/11. Incluir no PARA: leite, milho, soja, carnes, peixes e água. Implantar rede de laboratórios.
- 4. Implantar FÓRUNS de elaboração de normas, de monitoramento e de vigilância do desenvolvimento local e regional;
- 5. Financiamentos públicos para as agropecuárias que investirem em tecnologias sustentáveis e sem agrotóxicos. Ampliar os financiamentos para a agroecologia;
- 6. Tratar este modo de produção agropecuário, "químico-dependente", como problema de Saúde Pública humana, animal, vegetal e ambiental.

Novo modelo de Saúde, de Agricultura e de Vida.

Implantação imediata da Vigilância do Desenvolvimento agropecuário, urbano e industrial.

Obrigado.

prof Dr. Wanderlei Pignati; UFMT/ISC; pignatimt@gmail.com; 65-36158881